ysautoml.optimization.mtl
Funtional Modules
ysautoml.optimization.mtl.examples.nyusp.train_mtl_nyusp
ysautoml.optimization.mtl.examples.nyusp.train_mtl_nyusp
ysautoml.optimization.mtl.examples.nyusp.train_mtl_nyusp(**kwargs)
Run Multi-Task Learning (MTL) training on the NYUv2 dataset using the LibMTL framework integrated within YSAutoML.
This function reproduces the original run.sh script from Multi-Task-Learning/examples/nyusp, allowing you to launch MTL experiments (e.g., GeMTL, GradNorm, UW, DWA, etc.) directly through the YSAutoML API.
Parameters
gpu_id(int, default0): Index of the GPU to use for training (e.g.,0,1, ...).seed(int, default0): Random seed for reproducibility of task sampling, optimizer initialization, and dataset splits.weighting(str, default"GeMTL"): Multi-task weighting strategy. Available options include:Arithmetic,GLS,UW,DWA,RLW,GradNorm,SI,IMTL_L,LSBwD,LSBwoD,AMTL,GeMTL.arch(str, default"HPS"): Model architecture type for task-specific decoders and shared backbone. Supported architectures include:HPS,Cross_stitch,MTAN,CGC,PLE,MMoE,DSelect_k,DIY,LTB.dataset_path(str, default"/dataset/nyuv2"): Root path of the NYUv2 dataset containing images and labels.scheduler(str, default"step"): Learning rate scheduling policy for the optimizer. Common options:"step","cos","exp".mode(str, default"train"): Operation mode for the run."train": Train model with train/val/test splits"test": Evaluate a pretrained model only
save_dir(str, default"./logs/nyusp_exp1"): Directory where experiment logs and checkpoints will be saved.
Returns
None: All logs, TensorBoard events, and model checkpoints are saved automatically insave_dir.Training logs:
${save_dir}/train.logTensorBoard events:
${save_dir}/events.out.tfevents.*Model checkpoints:
${save_dir}/checkpoints/epoch_xx.pth
Examples
Last updated