ysautoml.optimization.fxp
Funtional Modules
ysautoml.optimization.fxp.train_fxp
ysautoml.network.oneshot.train_dynas
ysautoml.optimization.fxp.train_fxp(**kwargs)
Run Fixed-Point Quantization (FXP) training for a specified model configuration using the YSAutoML optimization engine.
This function launches a separate training process (engines/train.py) based on the given YAML configuration file and manages device, seed, and log directory setup for reproducible quantization experiments.
Parameters
config(str): Path to the YAML configuration file defining dataset, model architecture, optimizer, scheduler, and loss parameters (e.g."configs/mobilenet_ori.yml").device(str, defaultcuda:0): Target device for training. Accepts standard PyTorch device strings such as"cpu","cuda:0","cuda:1", etc.seed(int, default42): Random seed for reproducibility of model initialization and data order.save_dir(str, default./logs/fxp_cifar100): Directory path to store experiment logs, TensorBoard event files, and checkpoint results.
Returns
None: All training outputs are written to disk.Logs:
${save_dir}/(e.g.logs/fxp_cifar100/events.out.tfevents.*)Checkpoints:
./results/.../checkpoint/student_epoch_XXXX.pthConfiguration printout: Displayed in console via
pprint(config)TensorBoard summaries: Scalars and histograms of losses, activations, and quantization parameters
Examples
Example Configuration Files
configs/resnet20_cifar100.yml
configs/mobilenet_ori.yml
Last updated