ysautoml.data.fyi

funtional

ysautoml.data.fyi.run_dsa

ysautoml.data.fyi.run_dsa(**kwargs)

Run dataset condensation using Differentiable Siamese Augmentation (DSA).

Parameters

  • dataset (str): Dataset name (e.g., 'CIFAR10', 'CIFAR100').

  • model (str): Backbone model (e.g., 'ConvNet').

  • ipc (int): Images per class.

  • eval_mode (str): Evaluation mode. Options:

    • 'S': same as training model

    • 'M': multi architectures

    • 'W': net width

    • 'D': net depth

    • 'A': activation function

    • 'P': pooling layer

    • 'N': normalization layer

  • num_exp (int): Number of experiments.

  • num_eval (int): Number of evaluation models.

  • epoch_eval_train (int): Epochs for evaluation training.

  • Iteration (int, default=1000): Training iterations.

  • lr_img (float): Learning rate for synthetic images.

  • lr_net (float): Learning rate for network parameters.

  • batch_real (int): Batch size for real data.

  • batch_train (int): Batch size for synthetic training.

  • init (str): Initialization mode. Options: 'noise', 'real'.

  • dsa_strategy (str): Augmentation strategy (comma-separated).

  • data_path (str): Path to dataset root.

  • device (str): Device ID, e.g. '0'.

  • run_name (str): Experiment name.

  • run_tags (str, optional): Tags for logging.

Returns

  • dict: Containing results of all experiments:

    • save_path (str): Directory of logs and checkpoints.

    • accs_all_exps (dict): Recorded accuracies for each evaluation model.

    • eval_pool (list): Evaluation model pool.

    • num_exp (int): Number of experiments.

Examples


ysautoml.data.fyi.run_dm

ysautoml.data.fyi.run_dm(**kwargs)

Run dataset condensation using Distribution Matching (DM).

Parameters

  • (same as run_dsa, except default Iteration=20000)

Returns

  • dict: Same format as run_dsa.

Examples

Last updated