ysautoml.data.fyi
funtional
ysautoml.data.fyi.run_dsa
ysautoml.data.fyi.run_dsa(**kwargs)
Run dataset condensation using Differentiable Siamese Augmentation (DSA).
Parameters
dataset(str): Dataset name (e.g.,'CIFAR10','CIFAR100').model(str): Backbone model (e.g.,'ConvNet').ipc(int): Images per class.eval_mode(str): Evaluation mode. Options:'S': same as training model'M': multi architectures'W': net width'D': net depth'A': activation function'P': pooling layer'N': normalization layer
num_exp(int): Number of experiments.num_eval(int): Number of evaluation models.epoch_eval_train(int): Epochs for evaluation training.Iteration(int, default=1000): Training iterations.lr_img(float): Learning rate for synthetic images.lr_net(float): Learning rate for network parameters.batch_real(int): Batch size for real data.batch_train(int): Batch size for synthetic training.init(str): Initialization mode. Options:'noise','real'.dsa_strategy(str): Augmentation strategy (comma-separated).data_path(str): Path to dataset root.device(str): Device ID, e.g.'0'.run_name(str): Experiment name.run_tags(str, optional): Tags for logging.
Returns
dict: Containing results of all experiments:save_path(str): Directory of logs and checkpoints.accs_all_exps(dict): Recorded accuracies for each evaluation model.eval_pool(list): Evaluation model pool.num_exp(int): Number of experiments.
Examples
ysautoml.data.fyi.run_dm
ysautoml.data.fyi.run_dm(**kwargs)
Run dataset condensation using Distribution Matching (DM).
Parameters
(same as
run_dsa, except defaultIteration=20000)
Returns
dict: Same format asrun_dsa.
Examples
Last updated